P-ADIC RATIONAL DYNAMIC SYSTEMS
Khamidov Sherali Shirinovich Teacher at Bukhara State Pedagogical Institute
Keywords:
Rational dynamical systems; fixed point; invariant set; Siegel disk; fields of p-adic complex numbers.Abstract
The work uses the methods of mathematical analysis, complex analysis and p-adic analysis. Study of the theory of dynamical systems with discrete time in the field of p-adic complex numbers and their implementation:
- Find fixed points of a/(x^2+1) - rational functions;
- study the dynamics corresponding to the characteristics of fixed and points, in particular when this point is unique;
- find periodic points in case of the absence of a fixed point and investigate the dynamics in accordance with the nature of these points;
The results of the work on the development of the theory of discrete dynamical systems for the class of p-adic rational functions. The practical significance of the results obtained is expressed in the fact that they can be used for the further development of telecommunications, digital analysis and cryptography. The results have theoretical character. They can be used in the study of related areas of mathematics, the dynamics of biological and physical systems.
References
Albeverio S., Rozikov U.A., Sattarov I.A., p-adic (2, 1)-rational dynamical systems. Jour. Math. Anal. Appl. 398(2) (2013), 553–566.
Albeverio S., Tirozzi B., Khrennikov A.Yu., S. de Shmedt, p-adic dynamical systems. Theoret. and Math. Phys. 114(3) (1998), 276–287.
Anashin V., Khrennikov A., Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics vol 49, Walter de Gruyter (Berlin - New York), 2009. On a non-linear p-adic dynamical system 159
Khrennikov A.Yu., Oleschko K., M. de Jes´us Correa L´opez, Applications of padic numbers: from physics to geology. Advances in non-Archimedean analysis, 121–131, Contemp. Math., 665, Amer. Math. Soc., Providence, RI, 2016.
Koblitz N., p-adic numbers, p-adic analysis and zeta-function Springer, Berlin, 1977.
Mukhamedov F., Khakimov O., Chaotic behaviour of the p-adic Potts-Bethe mapping, Disc. Cont. Dyn. Syst. 38 (2018), 231–245.
Peitgen H.-O., Jungers H., Saupe D., Chaos Fractals, Springer, Heidelberg-New York, 1992.
Rozikov U.A., What are p-adic numbers? What are they used for? Asia Pac. Math.
Newsl. 3(4) (2013), 1–6.
Rozikov U.A., Sattarov I.A., On a non-linear p-adic dynamical system. p-Adic Numbers, Ultrametric Analysis and Applications, 6(1) (2014), 53–64.
Rozikov U.A., Sattarov I.A., p-adic dynamical systems of (2, 2)-rational functions with unique fixed point. Chaos, Solitons and Fractals, 105 (2017), 260–270.
Rozikov U.A., Sattarov I.A., Yam S., p-adic dynamical systems of the function . p-Adic Numbers Ultrametric Anal. Appl. 11(1) (2019), 77–87.
Rozikov U.A., Sattarov I.A., Dynamical systems of the p-adic (2, 2)-rational functions with two fixed points. Results in Mathematics, 75(3) (2020), 37 pp.
Vladimirov V.S., Volovich I.V., Zelenov E.I., p-Adic Analysis and Mathematical Physics (Series Sov. and East Eur. Math., Vol. 10), World Scientific, River Edge, N. J. (1994)
Albeverio S., Rozikov U.A., Sattarov I.A., p-adic (2, 1)-rational dynamical systems. Jour. Math. Anal. Appl. 398(2) (2013), 553–566.
Koblitz N., p-adic numbers, p-adic analysis and zeta-function. Springer, Berlin, 1977.
S. Albeverio, B. Tirozzi, A.Yu. Khrennikov, S. de Shmedt, p-adic dynamical systems. Theoret. and Math. Phys. 114(3) (1998), 276–287.
A.Yu. Khrennikov, K. Oleschko, M. de Jes´ p-adic numbers: from physics to geology. Advances in non-Archimedean analysis, 121–131, Contemp. Math., 665, Amer. Math. Soc., Providence, RI, 2016.
H.-O.Peitgen, H.Jungers and D.Saupe, Chaos Fractals, Springer, Heidelberg-New York, 1992.
U.A. Rozikov, What are p-adic numbers? What are they used for? Asia Pac. Math. Newsl. 3(4) (2013), 1–6.
U.A. Rozikov, I.A. Sattarov. On a non-linear p-adic dynamical system. p-Adic Numbers, Ultrametric Analysis and Applications, 6(1) (2014), 53–64.
U.A. Rozikov, I.A. Sattarov. p-adic dynamical systems of (2, 2)-rational functions with unique fixed point. Chaos, Solitons and Fractals, 105 (2017), 260–270.
U.A. Rozikov, I.A. Sattarov. Dynamical systems of the p-adic (2, 2)-rational functions with two fixed points. Results in Mathematics, 75(3) (2020), 37 pp.
U.A. Rozikov, I.A. Sattarov, S. Yam, p-adic dynamical systems of the function p-Adic Numbers Ultrametric Anal. Appl. 11(1) (2019), 77–87.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Series Sov. and East Eur. Math., Vol. 10), World Scientific, River Edge, N. J. (1994).
Albeverio, S., Rozikov, U.A., Sattarov, I.A.: p-adic (2, 1)-rational dynamical sys-tems. J. Math. Anal. Appl. 398(2), 553–566 (2013)
Albeverio, S., Kloeden, P.E., Khrennikov, A.: Human memory as a p-adic dy-namical system. Theor. Math. Phys. 114(3), 1414–1422 (1998)
Albeverio, S., Khrennikov, A., Tirozzi, B., De Smedt, S.: p-adic dynamical sys-tems.
Theor. Math. Phys. 114(3), 276–287 (1998)
Anashin, V.S.: Ergodic transformations in the space of p-adic integers. In: p-Adic Mathematical Physics, 3–24, AIP Conference Proceedings, vol. 826. American Institute of Physics, Melville, NY (2006)
Anashin, V.S., Khrennikov, A.Y.: Applied Algebraic Dynamics. de Gruyter Ex-positions in Mathematics, vol. 49. Walter de Gruyter, Berlin (2009)
Anashin, V.S.: Non-Archimedean ergodic theory and pseudorandom generators. Comput. J. 53(4), 370–392 (2010)
Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Characterization of ergodicity of p-adic dynamical systems by using van der Put basis. Dokl. Math. 83(3), 306–308 (2011)
Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Ergodicity of dynamical systems on 2-adic spheres. Dokl. Math. 86(3), 843–845 (2012)
Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Ergodicity criteria for non-expanding transformations of 2-adic spheres. Discrete Contin. Dyn. Syst. 34(2), 367–377 (2014)
Call, G., Silverman, J.: Canonical height on varieties with morphisms. Compos. Math. 89, 163–205 (1993)
Diao, H., Silva, C.E.: Digraph representations of rational functions over the p-adic numbers. p-Adic Numbers Ultrametr. Anal. Appl. 3(1), 23–38 (2011)
Escassut, A.: Analytic Elements in p-Adic Analysis. World Scientific, River Edge, NJ (1995)
Fan, A.-H., Liao, L.-M.: On minimal decomposition of p-adic polynomial dy-namical systems. Adv. Math. 228, 2116–2144 (2011)
Fan, A., Fan, S., Liao, L., Wang, Y.: On minimal decomposition of p-adic ho-mographic dynamical systems. Adv. Math. 257, 92–135 (2014)
Gouvea, F.Q.: p-Adic Numbers. An Introduction, 2nd edn. Springer, Berlin (1997)
Khrennikov, A.Y., Nilsson, M.: p-Adic Deterministic and Random Dynamics.
Mathematics Applications, vol. 574. Kluwer, Dordrecht (2004)
Khrennikov, A.Y.: p-adic description of chaos. In: Alfinito, E., Boti, M. (eds.) Nonlinear Physics: Theory and Experiment, pp. 177–184. WSP, Singapore (1996)
Khamraev, M., Mukhamedov, F.M.: On a class of rational p-adic dynamical systems. J. Math. Anal. Appl. 315(1), 76–89 (2006)
Koblitz, N.: p-Adic Numbers, p-Adic Analysis and Zeta-Function. Springer, Berlin (1977)
Memi´c, N.: Characterization of ergodic rational functions on the set 2-adic units. Int. J. Number Theory 13, 1119–1128 (2017)
Mukhamedov, F.M., Khakimov, O.N.: On metric properties of unconventional limit sets of contractive non-Archimedean dynamical systems. Dyn. Syst. 31(4), 506–524 (2016)
Mukhamedov, F.M., Khakimov, O.N.: Phase transition and chaos: p-adic Potts model on a Cayley tree. Chaos Solitons Fractals 87, 190–196 (2016)
Mukhamedov, F.M.: On the chaotic behavior of cubic p-adic dynamical systems. Math.
Notes 83(3), 428–431 (2008)
Mukhamedov, F.M., Rozikov, U.A.: On rational p-adic dynamical systems. Methods Funct. Anal. Topol. 10(2), 21–31 (2004) 49. Mukhamedov, F.M., Rozikov, U.A.: A plynomial p-adic dynamical system. Theor. Math. Phys. 170(3), 376–383 (2012)
Mukhamedov, F.M., Mendes, J.F.F.: On the chaotic behavior of a generalized logistic p-adic dynamical system. J. Differ. Equ. 243, 125–145 (2007)
Peitgen, H.-O., Jungers, H., Saupe, D.: Chaos Fractals. Springer, Heidelberg (1992)
Robert, A.M.: A Course of p-Adic Analysis (Graduate Texts in Mathematics), vol. 198. Springer, New York (2000)
Rozikov, U.A., Khakimov, O.N.: Description of all translation-invariant p-adic Gibbs measures for the Potts model on a Cayley tree. Markov Process. Relat. Fields 21(1), 177–204 (2015)
Rozikov, U.A., Sattarov, I.A.: On a non-linear p-adic dynamical system. p-Adic Numbers Ultrametr. Anal. Appl. 6(1), 53–64 (2014)
Rozikov, U.A., Sattarov, I.A.: p-adic dynamical systems of (2, 2)-rational func-tions with unique fixed point. Chaos Solitons Fractals 105, 260–270 (2017)
Rozikov, U.A., Sattarov, I.A., Yam, S.: p-adic dynamical systems of the function ax/x2 + a p-Adic Numbers Ultrametr. Anal. Appl. 11(1), 77–87 (2019)
Sattarov, I.A.: p-adic (3, 2)-rational dynamical systems. p-Adic Numbers Ultra- metr. Anal. Appl. 7(1), 39–55 (2015)
Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)