P-ADIK RATSIONAL DINAMIK SISTEMALAR

Hamidov Sherali Shirinovich Buxoro davlat pedagogika institute o’qituvchisi

Авторы

  • Hamidov Sherali Shirinovich TerDU

Ключевые слова:

Ratsional dinamik sistemalar; qo`zg‘almas nuqta; invariant to’plam; Siegel disk; р-adik kompleks sonlar maydoni.

Аннотация

Ishni bajarishda matematik analiz, kompleks analiz va p-adik analiz usullaridan foydalanildi. Р-Adik kompleks sonlar maydoni ustida berilgan diskret vaqtli dinamik sistemalar nazariyasini o’rganish va ularni qo’llab:
• a/(x^2+1) –ratsional funksiya qo’zg’almas nuqtalarini topish;
• Qo’zg’almas nuqta yagona bo’lgan holda bu qo’zg’almas nuqtaning xarakteriga mos ravishda dinamikani tadqiq etish;
• Qo’zg’almas nuqta mavjud bo’lmagan holda davriy nuqtalarni topish va bu davriy nuqtalarning xarakteriga mos ravishda dinamikani tadqiq etish.
Maqola natijalari р-adik ratsional funksiyalar bir sinfi uchun diskret dinamik sistemalari nazariyasini rivojlantirishda qo’llaniladi.Natijalarining amaliy ahamiyati telekomunikatsiyaning ba’zi masalalarini va raqamli tahlil hamda kriptografiyada qo’llash imkoniyati bilan izohlanadi. Asosiy natijalar nazariy xarakterga ega. Matematikaning turdosh sohalari va biologik va fizik sistemalar dinamikasini o’rganishda qo’llanadi.

Библиографические ссылки

Albeverio S., Rozikov U.A., Sattarov I.A., p-adic (2, 1)-rational dynamical systems. Jour. Math. Anal. Appl. 398(2) (2013), 553–566.

Albeverio S., Tirozzi B., Khrennikov A.Yu., S. de Shmedt, p-adic dynamical systems. Theoret. and Math. Phys. 114(3) (1998), 276–287.

Anashin V., Khrennikov A., Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics vol 49, Walter de Gruyter (Berlin - New York), 2009. On a non-linear p-adic dynamical system 159

Khrennikov A.Yu., Oleschko K., M. de Jes´us Correa L´opez, Applications of padic numbers: from physics to geology. Advances in non-Archimedean analysis, 121–131, Contemp. Math., 665, Amer. Math. Soc., Providence, RI, 2016.

Koblitz N., p-adic numbers, p-adic analysis and zeta-function Springer, Berlin, 1977.

Mukhamedov F., Khakimov O., Chaotic behaviour of the p-adic Potts-Bethe mapping, Disc. Cont. Dyn. Syst. 38 (2018), 231–245.

Peitgen H.-O., Jungers H., Saupe D., Chaos Fractals, Springer, Heidelberg-New York, 1992.

Rozikov U.A., What are p-adic numbers? What are they used for? Asia Pac. Math.

Newsl. 3(4) (2013), 1–6.

Rozikov U.A., Sattarov I.A., On a non-linear p-adic dynamical system. p-Adic Numbers, Ultrametric Analysis and Applications, 6(1) (2014), 53–64.

Rozikov U.A., Sattarov I.A., p-adic dynamical systems of (2, 2)-rational functions with unique fixed point. Chaos, Solitons and Fractals, 105 (2017), 260–270.

Rozikov U.A., Sattarov I.A., Yam S., p-adic dynamical systems of the function . p-Adic Numbers Ultrametric Anal. Appl. 11(1) (2019), 77–87.

Rozikov U.A., Sattarov I.A., Dynamical systems of the p-adic (2, 2)-rational functions with two fixed points. Results in Mathematics, 75(3) (2020), 37 pp.

Vladimirov V.S., Volovich I.V., Zelenov E.I., p-Adic Analysis and Mathematical Physics (Series Sov. and East Eur. Math., Vol. 10), World Scientific, River Edge, N. J. (1994)

Albeverio S., Rozikov U.A., Sattarov I.A., p-adic (2, 1)-rational dynamical systems. Jour. Math. Anal. Appl. 398(2) (2013), 553–566.

Koblitz N., p-adic numbers, p-adic analysis and zeta-function. Springer, Berlin, 1977.

S. Albeverio, B. Tirozzi, A.Yu. Khrennikov, S. de Shmedt, p-adic dynamical systems. Theoret. and Math. Phys. 114(3) (1998), 276–287.

A.Yu. Khrennikov, K. Oleschko, M. de Jes´ p-adic numbers: from physics to geology. Advances in non-Archimedean analysis, 121–131, Contemp. Math., 665, Amer. Math. Soc., Providence, RI, 2016.

H.-O.Peitgen, H.Jungers and D.Saupe, Chaos Fractals, Springer, Heidelberg-New York, 1992.

U.A. Rozikov, What are p-adic numbers? What are they used for? Asia Pac. Math. Newsl. 3(4) (2013), 1–6.

U.A. Rozikov, I.A. Sattarov. On a non-linear p-adic dynamical system. p-Adic Numbers, Ultrametric Analysis and Applications, 6(1) (2014), 53–64.

U.A. Rozikov, I.A. Sattarov. p-adic dynamical systems of (2, 2)-rational functions with unique fixed point. Chaos, Solitons and Fractals, 105 (2017), 260–270.

U.A. Rozikov, I.A. Sattarov. Dynamical systems of the p-adic (2, 2)-rational functions with two fixed points. Results in Mathematics, 75(3) (2020), 37 pp.

U.A. Rozikov, I.A. Sattarov, S. Yam, p-adic dynamical systems of the function p-Adic Numbers Ultrametric Anal. Appl. 11(1) (2019), 77–87.

V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Series Sov. and East Eur. Math., Vol. 10), World Scientific, River Edge, N. J. (1994).

Albeverio, S., Rozikov, U.A., Sattarov, I.A.: p-adic (2, 1)-rational dynamical sys-tems. J. Math. Anal. Appl. 398(2), 553–566 (2013)

Albeverio, S., Kloeden, P.E., Khrennikov, A.: Human memory as a p-adic dy-namical system. Theor. Math. Phys. 114(3), 1414–1422 (1998)

Albeverio, S., Khrennikov, A., Tirozzi, B., De Smedt, S.: p-adic dynamical sys-tems.

Theor. Math. Phys. 114(3), 276–287 (1998)

Anashin, V.S.: Ergodic transformations in the space of p-adic integers. In: p-Adic Mathematical Physics, 3–24, AIP Conference Proceedings, vol. 826. American Institute of Physics, Melville, NY (2006)

Anashin, V.S., Khrennikov, A.Y.: Applied Algebraic Dynamics. de Gruyter Ex-positions in Mathematics, vol. 49. Walter de Gruyter, Berlin (2009)

Anashin, V.S.: Non-Archimedean ergodic theory and pseudorandom generators. Comput. J. 53(4), 370–392 (2010)

Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Characterization of ergodicity of p-adic dynamical systems by using van der Put basis. Dokl. Math. 83(3), 306–308 (2011)

Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Ergodicity of dynamical systems on 2-adic spheres. Dokl. Math. 86(3), 843–845 (2012)

Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Ergodicity criteria for non-expanding transformations of 2-adic spheres. Discrete Contin. Dyn. Syst. 34(2), 367–377 (2014)

Call, G., Silverman, J.: Canonical height on varieties with morphisms. Compos. Math. 89, 163–205 (1993)

Diao, H., Silva, C.E.: Digraph representations of rational functions over the p-adic numbers. p-Adic Numbers Ultrametr. Anal. Appl. 3(1), 23–38 (2011)

Escassut, A.: Analytic Elements in p-Adic Analysis. World Scientific, River Edge, NJ (1995)

Fan, A.-H., Liao, L.-M.: On minimal decomposition of p-adic polynomial dy-namical systems. Adv. Math. 228, 2116–2144 (2011)

Fan, A., Fan, S., Liao, L., Wang, Y.: On minimal decomposition of p-adic ho-mographic dynamical systems. Adv. Math. 257, 92–135 (2014)

Gouvea, F.Q.: p-Adic Numbers. An Introduction, 2nd edn. Springer, Berlin (1997)

Khrennikov, A.Y., Nilsson, M.: p-Adic Deterministic and Random Dynamics.

Mathematics Applications, vol. 574. Kluwer, Dordrecht (2004)

Khrennikov, A.Y.: p-adic description of chaos. In: Alfinito, E., Boti, M. (eds.) Nonlinear Physics: Theory and Experiment, pp. 177–184. WSP, Singapore (1996)

Khamraev, M., Mukhamedov, F.M.: On a class of rational p-adic dynamical systems. J. Math. Anal. Appl. 315(1), 76–89 (2006)

Koblitz, N.: p-Adic Numbers, p-Adic Analysis and Zeta-Function. Springer, Berlin (1977)

Memi´c, N.: Characterization of ergodic rational functions on the set 2-adic units. Int. J. Number Theory 13, 1119–1128 (2017)

Mukhamedov, F.M., Khakimov, O.N.: On metric properties of unconventional limit sets of contractive non-Archimedean dynamical systems. Dyn. Syst. 31(4), 506–524 (2016)

Mukhamedov, F.M., Khakimov, O.N.: Phase transition and chaos: p-adic Potts model on a Cayley tree. Chaos Solitons Fractals 87, 190–196 (2016)

Mukhamedov, F.M.: On the chaotic behavior of cubic p-adic dynamical systems. Math.

Notes 83(3), 428–431 (2008)

Mukhamedov, F.M., Rozikov, U.A.: On rational p-adic dynamical systems. Methods Funct. Anal. Topol. 10(2), 21–31 (2004) 49. Mukhamedov, F.M., Rozikov, U.A.: A plynomial p-adic dynamical system. Theor. Math. Phys. 170(3), 376–383 (2012)

Mukhamedov, F.M., Mendes, J.F.F.: On the chaotic behavior of a generalized logistic p-adic dynamical system. J. Differ. Equ. 243, 125–145 (2007)

Peitgen, H.-O., Jungers, H., Saupe, D.: Chaos Fractals. Springer, Heidelberg (1992)

Robert, A.M.: A Course of p-Adic Analysis (Graduate Texts in Mathematics), vol. 198. Springer, New York (2000)

Rozikov, U.A., Khakimov, O.N.: Description of all translation-invariant p-adic Gibbs measures for the Potts model on a Cayley tree. Markov Process. Relat. Fields 21(1), 177–204 (2015)

Rozikov, U.A., Sattarov, I.A.: On a non-linear p-adic dynamical system. p-Adic Numbers Ultrametr. Anal. Appl. 6(1), 53–64 (2014)

Rozikov, U.A., Sattarov, I.A.: p-adic dynamical systems of (2, 2)-rational func-tions with unique fixed point. Chaos Solitons Fractals 105, 260–270 (2017)

Rozikov, U.A., Sattarov, I.A., Yam, S.: p-adic dynamical systems of the function ax/x2 + a p-Adic Numbers Ultrametr. Anal. Appl. 11(1), 77–87 (2019)

Sattarov, I.A.: p-adic (3, 2)-rational dynamical systems. p-Adic Numbers Ultra- metr. Anal. Appl. 7(1), 39–55 (2015)

Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)

Загрузки

Опубликован

2025-03-03